Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.333
Filtrar
1.
Biochem Biophys Res Commun ; 595: 7-13, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35091109

RESUMO

The intestinal tract is an essential component of the body's immune system, and is extremely sensitive to exposure of ionizing radiation. While ionizing radiation can effectively induce multiple forms of cell death, whether it can also promote ferroptosis in intestinal cells and the possible interrelationship between ferroptosis and intestinal immune function has not been reported so far. Here, we found that radiation-induced major ultrastructural changes in mitochondria of small intestinal epithelial cells and the changes induced in iron content and MDA levels in the small intestine were consistent with that observed during cellular ferroptosis, thus suggesting occurrence of ferroptosis in radiation-induced intestinal damage. Moreover, radiation caused a substantial increase in the expression of ferroptosis-related factors such as LPCAT3 and ALOX15 mRNA, augmented the levels of immune-related factors INF-γ and TGF-ß mRNA, and decreased the levels of IL-17 mRNA thereby indicating that ionizing radiation induced ferroptosis and impairment of intestinal immune function. Liproxstatin-1 is a ferroptosis inhibitor that was found to ameliorate radiation-induced ferroptosis and promote the recovery from immune imbalances. These findings supported the role of ferroptosis in radiation-induced intestinal immune injury and provide novel strategies for protection against radiation injury through regulation of the ferroptosis pathway.


Assuntos
Ferroptose/fisiologia , Intestinos/patologia , Quinoxalinas/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Radiação Ionizante , Compostos de Espiro/farmacologia , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Araquidonato 12-Lipoxigenase/genética , Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Glutationa/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/efeitos da radiação , Intestinos/efeitos dos fármacos , Intestinos/efeitos da radiação , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Mitocôndrias/ultraestrutura , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/fisiopatologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxido Dismutase/metabolismo
2.
Mol Med Rep ; 25(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35039875

RESUMO

The aim of the present study was to explore the mechanism underlying the ultraviolet B (UVB) irradiation­induced apoptosis of human lens epithelial cells (HLECs), and to investigate the protective effect of epigallocatechin gallate (EGCG) against the UVB­induced apoptosis of HLECs. HLECs were exposed to different concentrations of EGCG plus UVB (30 mJ/cm2). Cell viability was determined using the MTT assay. Furthermore, mitochondrial membrane potential (Δψm) and apoptosis were assessed by flow cytometry with JC­1 and Annexin V/PI staining, respectively. Moreover, the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH­Px), as well as the levels of GSH, hydrogen peroxide (H2O2) and hydroxyl free radicals were determined using biochemical assay techniques. Reverse transcription­quantitative PCR and western blotting were used to detect the mRNA and protein expression levels of Bcl­2, Bax, cytochrome c, caspase­9 and caspase­3, respectively. The results revealed that UVB irradiation reduced the Δψm of HLECs and induced apoptosis. Notably, EGCG significantly attenuated the generation of H2O2 and hydroxyl free radicals caused by UVB irradiation in HLECs, and significantly increased CAT, SOD and GSH­Px activities, however, the GSH levels were not significantly increased. EGCG also reduced UVB­stimulated Bax, cytochrome c, caspase­9 and caspase­3 expression, and elevated Bcl­2 expression, suggesting that EGCG may possess free radical­scavenging properties, thus increasing cell viability. In conclusion, EGCG may be able to protect against UVB­induced HLECs apoptosis through the mitochondria­mediated apoptotic signaling pathway, indicating its potential application in clinical practice.


Assuntos
Catequina/análogos & derivados , Células Epiteliais/efeitos dos fármacos , Cristalino/citologia , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Raios Ultravioleta , Apoptose/efeitos dos fármacos , Apoptose/genética , Apoptose/efeitos da radiação , Western Blotting , Caspases/genética , Caspases/metabolismo , Catalase/metabolismo , Catequina/química , Catequina/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/efeitos da radiação , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Superóxido Dismutase/metabolismo
3.
Mol Biol Rep ; 49(2): 1321-1327, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797493

RESUMO

BACKGROUND: Recently exposure to ionizing radiation driven by artificial radiation sources such as Medical X-rays and Nuclear medicine has increased hastily. Ionizing radiation-induced the DNA damage and activate the DNA damage response signaling pathways. The aim of this study was to evaluate the role of miR-21 and miR-625 in response to low-dose ionizing radiation. MATERIALS AND METHODS: In this study, the blood sample of 38 volunteer patients who underwent Cardiac scans before and after 99mTc-MIBI injection were used. The WBC of patients was used for RNA extraction and after cDNA synthesis by the poly-A method the expression level of miR-21 and miR-625 was evaluated by real-time PCR method. RESULTS: The results of this study indicated that miR-21 and miR- 625 were significantly upregulated under exposure to low-dose ionizing radiation. The expression level of these miRNAs was not significantly correlated with the age and BMI of patients. More ever the bioinformatics analysis indicated that SP1 was a common target of both miRNAs and had the highest degree between hub genes. CONCLUSION: In summary miR-21 and miR-625 can contribute to the response to acute low dose ionizing radiation by targeting the SP1. However further studies should be carried out on the molecular mechanism of effects of miR-21 and miR-625 in response to low dose ionizing radiation by targeting the SP1.


Assuntos
Dano ao DNA/efeitos da radiação , Expressão Gênica/efeitos da radiação , MicroRNAs/efeitos da radiação , Biologia Computacional , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Radiação Ionizante , Transdução de Sinais , Regulação para Cima
4.
Comput Biol Chem ; 96: 107602, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34823125

RESUMO

Herein it is proposed that sufficient exposure to sunlight (UVB) modulates host gene expression, offering protection against severe consequences of COVID-19. This could be in addition to sunlight (UVB)-mediated protection by directly inactivating the virus and limiting the viral load. It is suggested that inhibition of CCR2, DPP9, HSPA1L, IFNAR2, OAS1, and TYK2 may, in part, explain UVB-mediated protection against severe consequences of COVID-19.


Assuntos
COVID-19/prevenção & controle , SARS-CoV-2 , Luz Solar , COVID-19/genética , COVID-19/terapia , Biologia Computacional , Expressão Gênica/efeitos da radiação , Perfilação da Expressão Gênica , Helioterapia , Humanos , Modelos Biológicos , Índice de Gravidade de Doença , Raios Ultravioleta
5.
Sci Rep ; 11(1): 23620, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880333

RESUMO

Exposure to ionizing radiation in childhood has been recognized as a risk factor for thyroid cancer. We previously demonstrated that neonatal X-irradiation induced specific deformation of the thyroid follicles. Here, we further analyzed this model to understand the possible relationship with thyroid carcinogenesis. Wistar rats were subjected to cervical X-irradiation at different ages of 1-8 weeks old and at different doses of 1.5-12 Gy. For tumor promotion, rats were fed with an iodine-deficient diet (IDD). In cervically X-irradiated neonatal rats, the size of thyroid follicles decreased, accompanied by an increase in the number of TUNEL-positive cells. Fas and Lgals3 mRNA levels increased, while Mct8 and Lat4 expressions decreased. The co-administration of IDD induced the proliferation and the upregulation in Lgals3 expression, resulting in thyroid adenoma development at 28 weeks post-exposure. Our data demonstrated that single neonatal X-irradiation induced continuous apoptotic activity in the thyroid with the long-term alternation in Fas, Mct8, Lat4, and Lgals3 mRNA expressions. Some of these changes were similar to those induced by IDD, suggesting that neonatal X-irradiation may partially act as a thyroid tumor promoter. These radiation-induced thyroidal changes may be enhanced by the combined treatment with IDD, resulting in the early development of thyroid adenoma.


Assuntos
Expressão Gênica/efeitos da radiação , Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Animais , Peso Corporal , Carcinogênese , Humanos , Recém-Nascido , Tamanho do Órgão/efeitos da radiação , Ratos , Ratos Wistar , Hormônios Tireóideos/sangue , Neoplasias da Glândula Tireoide/genética
6.
J Immunol Res ; 2021: 3985697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957312

RESUMO

Although the effects of microwave exposure on the heart have gradually become the focus of domestic and foreign scholars, the biological effects caused by different doses and different frequency bands of exposure are still unclear. In this study, we will investigate the damaging effect of S-band and X-band microwave composite exposure on cardiac structure and function, as well as the pathophysiological significance of Cx43 in cardiac conduction dysfunction after exposure. We used S- and X-band radiation sources with the average power density of 5 and 10 mW/cm2 to expose Wistar rats to single or composite exposure. At the 6th hour, on the 7th, 14th, and 28th days after exposure, ECG was used to detect the electrical conduction of the heart, and the myocardial enzyme was measured by the automatic biochemical analyzer. We selected the observation time points and groups with severe damage to observe the changes of myocardial structure and ultrastructure with an optical microscope and TEM; and to detect the expression and distribution of Cx43 by western blotting and immunohistochemistry. After exposure, the heart rate increased, the P wave amplitude decreased, and the R wave amplitude increased; the content of the myocardial enzyme in serum increased; the structure and ultrastructure of cardiac tissue were damaged. The damage was dose-dependent and frequency-dependent. The expression of Cx43 in myocardial tissue decreased, and distribution was abnormal. Taken together, these findings suggested that the mechanism of abnormal electrical conduction in the heart of rats by S- and X-band microwave exposure might be related to the decreased expression and disordered distribution of Cx43 after microwave exposure.


Assuntos
Cardiomiopatias/etiologia , Conexina 43/genética , Expressão Gênica , Micro-Ondas/efeitos adversos , Animais , Biomarcadores , Cardiomiopatias/diagnóstico , Cardiomiopatias/metabolismo , Conexina 43/metabolismo , Modelos Animais de Doenças , Eletrocardiografia , Expressão Gênica/efeitos da radiação , Imuno-Histoquímica , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/ultraestrutura , Ratos
7.
PLoS One ; 16(11): e0260095, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34843523

RESUMO

Ablative fractional laser treatment is considered the gold standard for skin rejuvenation. In order to understand how fractional laser works to rejuvenate skin, we performed microarray profiling on skin biopsies to identify temporal and dose-response changes in gene expression following fractional laser treatment. The backs of 14 women were treated with ablative fractional laser (Fraxel®) and 4 mm punch biopsies were collected from an untreated site and at the treated sites 1, 3, 7, 14, 21 and 28 days after the single treatment. In addition, in order to understand the effect that multiple fractional laser treatments have on skin rejuvenation, several sites were treated sequentially with either 1, 2, 3, or 4 treatments (with 28 days between treatments) followed by the collection of 4 mm punch biopsies. RNA was extracted from the biopsies, analyzed using Affymetrix U219 chips and gene expression was compared between untreated and treated sites. We observed dramatic changes in gene expression as early as 1 day after fractional laser treatment with changes remaining elevated even after 1 month. Analysis of individual genes demonstrated significant and time related changes in inflammatory, epidermal, and dermal genes, with dermal genes linked to extracellular matrix formation changing at later time points following fractional laser treatment. When comparing the age-related changes in skin gene expression to those induced by fractional laser, it was observed that fractional laser treatment reverses many of the changes in the aging gene expression. Finally, multiple fractional laser treatments, which cover different regions of a treatment area, resulted in a sustained or increased dermal remodeling response, with many genes either differentially regulated or continuously upregulated, supporting previous observations that maximal skin rejuvenation requires multiple fractional laser treatments. In conclusion, fractional laser treatment of human skin activates a number of biological processes involved in wound healing and tissue regeneration.


Assuntos
Expressão Gênica/efeitos da radiação , Rejuvenescimento/fisiologia , Cicatrização/genética , Adulto , Envelhecimento/genética , Biópsia , Células Epidérmicas/metabolismo , Células Epidérmicas/efeitos da radiação , Epiderme/efeitos da radiação , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Humanos , Terapia a Laser/métodos , Pessoa de Meia-Idade , RNA , Pele/metabolismo , Transcriptoma/genética
8.
Environ Health Prev Med ; 26(1): 103, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635049

RESUMO

BACKGROUND: Exposure to the ionizing radiation (IR) encountered outside the magnetic field of the Earth poses a persistent threat to the reproductive functions of astronauts. The potential effects of space IR on the circadian rhythms of male reproductive functions have not been well characterized so far. METHODS: Here, we investigated the circadian effects of IR exposure (3 Gy X-rays) on reproductive functional markers in mouse testicular tissue and epididymis at regular intervals over a 24-h day. For each animal, epididymis was tested for sperm motility, and the testis tissue was used for daily sperm production (DSP), testosterone levels, and activities of testicular enzymes (glucose-6-phosphate dehydrogenase (G6PDH), sorbitol dehydrogenase (SDH), lactic dehydrogenase (LDH), and acid phosphatase (ACP)), and the clock genes mRNA expression such as Clock, Bmal1, Ror-α, Ror-ß, or Ror-γ. RESULTS: Mice exposed to IR exhibited a disruption in circadian rhythms of reproductive markers, as indicated by decreased sperm motility, increased daily sperm production (DSP), and reduced activities of testis enzymes such as G6PDH, SDH, LDH, and ACP. Moreover, IR exposure also decreased mRNA expression of five clock genes (Clock, Bmal1, Ror-α, Ror-ß, or Ror-γ) in testis, with alteration in the rhythm parameters. CONCLUSION: These findings suggested potential health effects of IR exposure on reproductive functions of male astronauts, in terms of both the daily overall level as well as the circadian rhythmicity.


Assuntos
Ritmo Circadiano/efeitos da radiação , Expressão Gênica/efeitos da radiação , Genitália Masculina/efeitos da radiação , Exposição à Radiação , Radiação Ionizante , Fenômenos Reprodutivos Fisiológicos/efeitos da radiação , Fatores de Transcrição ARNTL/genética , Fosfatase Ácida , Animais , Proteínas CLOCK/genética , Epididimo/efeitos da radiação , Glucosefosfato Desidrogenase , L-Iditol 2-Desidrogenase , L-Lactato Desidrogenase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , RNA Mensageiro/genética , Motilidade dos Espermatozoides/efeitos da radiação , Espermatozoides/efeitos da radiação , Testículo/enzimologia , Testículo/efeitos da radiação
9.
J Insect Sci ; 21(5)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718645

RESUMO

Radiation is considered as a promising insect pest control strategy for minimizing postharvest yield losses. Among various techniques, irradiation is a method of choice as it induces lethal biochemical or molecular changes that cause a downstream cascade of abrupt physiological abnormalities at the cellular level. In this study, we evaluated the effect of 60Co-γ radiation on various developmental stages of Zeugodacus cucurbitae Coquillett and subsequent carry-over effects on the progeny. For this purpose, we treated eggs with 30- and 50-Gy radiation doses of 60Co-γ. We found that radiation significantly affected cellular antioxidants, insect morphology, and gene expression profiles. Our results indicate that in response to various doses of irradiation reactive oxygen species, catalase, peroxidase, and superoxide dismutase activities were increased along with a significant increase in the malondialdehyde (MDA) content. We observed higher mortality rates during the pupal stage of the insects that hatched from irradiated eggs (50 Gy). Furthermore, the life span of the adults was reduced in response to 50 Gy radiation. The negative effects carried over to the next generation were marked by significantly lower fecundity in the F1 generation of the irradiation groups as compared to control. The radiation induced morphological abnormalities at the pupal, as well as the adult, stages. Furthermore, variations in the gene expression following irradiation are discussed. Taken together, our results signify the utility of 60Co-γ radiation for fruit fly postharvest management.


Assuntos
Apoptose/efeitos da radiação , Raios gama , Expressão Gênica/efeitos da radiação , Tephritidae/efeitos da radiação , Animais , Antioxidantes/metabolismo , Antioxidantes/efeitos da radiação , Apoptose/genética , Catalase/metabolismo , Catalase/efeitos da radiação , Radioisótopos de Cobalto/farmacologia , Controle de Insetos/métodos , Proteínas de Insetos/metabolismo , Proteínas de Insetos/efeitos da radiação , Larva/genética , Larva/metabolismo , Larva/fisiologia , Larva/efeitos da radiação , Longevidade/efeitos da radiação , Malondialdeído/metabolismo , Malondialdeído/efeitos da radiação , Peroxidase/metabolismo , Peroxidase/efeitos da radiação , Controle de Pragas/métodos , Pupa/genética , Pupa/metabolismo , Pupa/fisiologia , Pupa/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/efeitos da radiação , Tephritidae/genética , Tephritidae/metabolismo , Tephritidae/fisiologia
10.
Biotechnol Lett ; 43(10): 1955-1966, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34482511

RESUMO

OBJECTIVES: Heat treatment as a physical method could increase the cellular uptake of nucleic acids. In this study, the effects of heat shock were evaluated to enhance the transfection efficiency of three plasmid DNAs into HeLa and TC-1 cancerous, and HEK-293 T and Vero non-cancerous cell lines using lipofectamine 2000 reagent. METHODS: Two methods of cell- and DNA-based heat treatment were used. Heating DNA solution was performed at 94 °C for 5, 10 and 15 min, and also 72 °C for 30, 60 and 120 min, individually. Moreover, heating the cells was done by incubation at 42 °C for 2 h in different times such as before, during and after DNA transfection. RESULTS: Our data showed that the conformation of plasmid DNAs was changed at different temperatures with increasing time. The heat-treated plasmid DNAs (94 °C for 10 min or 72 °C for 30 min) indicated higher transfection efficiency than untreated plasmid DNAs (p < 0.05). Furthermore, heat treatment of cells before and during the transfection was higher than untreated cells (p < 0.01). Our results demonstrated that DNA transfection efficiency in cancerous cells was less than non-cancerous cells (p < 0.01). CONCLUSION: Generally, these findings showed that transfection mediated by thermal stimulation could enhance gene transfection in mammalian cell lines.


Assuntos
DNA , Expressão Gênica/efeitos da radiação , Temperatura Alta , Transfecção/métodos , Animais , Chlorocebus aethiops , DNA/genética , DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , Plasmídeos/genética , Plasmídeos/metabolismo , Células Vero
11.
Sci Rep ; 11(1): 19033, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561481

RESUMO

Keratinocytes, the main cell type of the skin, are one of the most exposed cells to environmental factors, providing a first defence barrier for the host and actively participating in immune response. In fact, keratinocytes express pattern recognition receptors that interact with pathogen associated molecular patterns and damage associated molecular patterns, leading to the production of cytokines and chemokines, including interleukin (IL)-6. Herein, we investigated whether mechanical energy transported by low intensity ultrasound (US) could generate a mechanical stress able to induce the release of inflammatory cytokine such IL-6 in the human keratinocyte cell line, HaCaT. The extensive clinical application of US in both diagnosis and therapy suggests the need to better understand the related biological effects. Our results point out that US promotes the overexpression and secretion of IL-6, associated with the activation of nuclear factor-κB (NF-κB). Furthermore, we observed a reduced cell viability dependent on exposure parameters together with alterations in membrane permeability, paving the way for further investigating the molecular mechanisms related to US exposure.


Assuntos
Expressão Gênica/efeitos da radiação , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Queratinócitos/metabolismo , Ondas Ultrassônicas/efeitos adversos , Permeabilidade da Membrana Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Relação Dose-Resposta à Radiação , Células HaCaT , Humanos , Interleucina-6/genética , NF-kappa B/metabolismo , Estresse Mecânico
12.
Molecules ; 26(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34443661

RESUMO

Protein methyltransferases are vital to the epigenetic modification of gene expression. Thus, obtaining a better understanding of and control over the regulation of these crucial proteins has significant implications for the study and treatment of numerous diseases. One ideal mechanism of protein regulation is the specific installation of a photolabile-protecting group through the use of photocaged non-canonical amino acids. Consequently, PRMT1 was caged at a key tyrosine residue with a nitrobenzyl-protected Schultz amino acid to modulate protein function. Subsequent irradiation with UV light removes the caging group and restores normal methyltransferase activity, facilitating the spatial and temporal control of PRMT1 activity. Ultimately, this caged PRMT1 affords the ability to better understand the protein's mechanism of action and potentially regulate the epigenetic impacts of this vital protein.


Assuntos
Epigênese Genética/efeitos da radiação , Proteínas Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos/genética , Aminoácidos , Epigênese Genética/genética , Expressão Gênica/efeitos da radiação , Humanos , Metilação/efeitos da radiação , Proteínas Metiltransferases/efeitos da radiação , Proteína-Arginina N-Metiltransferases/efeitos da radiação , Proteínas Repressoras/efeitos da radiação , Fatores de Transcrição/genética , Tirosina/química , Raios Ultravioleta
13.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359834

RESUMO

Astrocytes act as neural stem cells (NSCs) that have the potential to self-renew and differentiate into other neuronal cells. The protein expression of these astrocytes depends on the stage of differentiation, showing sequential expression of multiple proteins such as octamer-binding transcription factor 4 (Oct4), nestin, glial fibrillary acidic protein (GFAP), and aldehyde dehydrogenase 1 family member L1 (aldh1L1). Photobiomodulation (PBM) affects cell apoptosis, proliferation, migration, and adhesion. We hypothesized that astrocyte proliferation and differentiation would be modulated by PBM. We used an optimized astrocyte culture method and a 660-nanometer light-emitting diode (LED) to enhance the biological actions of many kinds of cells. We determined that the 660-nanometer LED promoted the biological actions of cultured astrocytes by increasing the reactive oxygen species levels. The overall viability of the cultured cells, which included various cells other than astrocytes, did not change after LED exposure; however, astrocyte-specific proliferation was observed by the increased co-expression of GFAP and bromodeoxyuridine (BrdU)/Ki67. Furthermore, the 660-nanometer LED provides evidence of differentiation, as shown by the decreased Oct4 and GFAP co-expression and increased nestin and aldh1L1 expression. These results demonstrate that a 660-nanometer LED can modify astrocyte proliferation, which suggests the efficacy of the therapeutic application of LED in various pathological states of the central nervous system.


Assuntos
Astrócitos/efeitos da radiação , Proliferação de Células/efeitos da radiação , Expressão Gênica/efeitos da radiação , Neurônios/efeitos da radiação , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Astrócitos/citologia , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Adesão Celular/efeitos da radiação , Diferenciação Celular/efeitos da radiação , Movimento Celular/efeitos da radiação , Técnicas de Cocultura , Embrião de Mamíferos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Lasers Semicondutores , Luz , Nestina/genética , Nestina/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo
14.
PLoS One ; 16(6): e0252672, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34081754

RESUMO

BACKGROUND: Collagen cross-links contribute to the mechanical resilience of the intervertebral disc (IVD). UVA-light-activated riboflavin-induced collagen crosslinking (UVA-CXL) is a well-established and effective ophthalmological intervention that increases the mechanical rigidity of the collagen-rich corneal matrix in Keratoconus. This study explores the feasibility, safety and efficacy of translating this intervention in reinforcing the IVD. METHODS: Annulus fibrosus (AF) cells were isolated from bovine IVDs and treated with different combinations of riboflavin (RF) concentrations (0.05-8 mM) and UVA light intensities (0.3-4 mW/cm2). Metabolic activity (resazurin assay), cell viability (TUNEL assay), and gene expression of apoptosis regulators C-FOS and PT5 were assessed immediately and 24 hours after treatment. Biomechanical effects of UVA-CXL on IVDs were measured by indentation analysis of changes in the instantaneous modulus and by peel-force delamination strength analysis of the AF prior and after treatment. RESULTS: Different intensities of UVA did not impair the metabolic activity of AF cells. However, RF affected metabolic activity (p < 0.001). PT53 expression was similar in all RF conditions tested while C-FOS expression decreased 24 hours after treatment. Twenty-four hours after treatment, no apoptotic cells were observed in any condition tested. Biomechanical characterizations showed a significant increase in the annular peel strength of the UVA-CXL group, when compared to controls of UVA and RF alone (p < 0.05). UVA-CXL treated IVDs showed up to 152% higher (p < 0.001) instantaneous modulus values compared to the untreated control. CONCLUSION: This is the first study on UVA-CXL treatment of IVD. It induced significantly increased delamination strength and instantaneous modulus indentation values in intact IVD samples in a structure-function relationship. RF concentrations and UVA intensities utilized in ophthalmological clinical protocols were well tolerated by the AF cells. Our findings suggest that UVA-CXL may be a promising tool to reinforce the IVD matrix.


Assuntos
Colágeno/metabolismo , Riboflavina/química , Raios Ultravioleta , Animais , Anel Fibroso/citologia , Anel Fibroso/efeitos dos fármacos , Anel Fibroso/metabolismo , Anel Fibroso/efeitos da radiação , Bovinos , Sobrevivência Celular/efeitos da radiação , Colágeno/química , Estudos de Viabilidade , Expressão Gênica/efeitos da radiação , Disco Intervertebral/citologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
J Nanobiotechnology ; 19(1): 190, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174890

RESUMO

BACKGROUND: Within the last decade, genetic engineering and synthetic biology have revolutionized society´s ability to mass-produce complex biological products within genetically-modified microorganisms containing elegantly designed genetic circuitry. However, many challenges still exist in developing bioproduction processes involving genetically modified microorganisms with complex or multiple gene circuits. These challenges include the development of external gene expression regulation methods with the following characteristics: spatial-temporal control and scalability, while inducing minimal permanent or irreversible system-wide conditions. Different stimuli have been used to control gene expression and mitigate these challenges, and they can be characterized by the effect they produce in the culture media conditions. Invasive stimuli that cause permanent, irreversible changes (pH and chemical inducers), non-invasive stimuli that cause partially reversible changes (temperature), and non-invasive stimuli that cause reversible changes in the media conditions (ultrasound, magnetic fields, and light). METHODS: Opto-control of gene expression is a non-invasive external trigger that complies with most of the desired characteristics of an external control system. However, the disadvantage relies on the design of the biological photoreceptors and the necessity to design them to respond to a different wavelength for every bioprocess needed to be controlled or regulated in the microorganism. Therefore, this work proposes using biocompatible metallic nanoparticles as external controllers of gene expression, based on their ability to convert light into heat and the capacity of nanotechnology to easily design a wide array of nanostructures capable of absorbing light at different wavelengths and inducing plasmonic photothermal heating. RESULTS: Here, we designed a nanobiosystem that can be opto-thermally triggered using LED light. The nanobiosystem is composed of biocompatible gold nanoparticles and a genetically modified E. coli with a plasmid that allows mCherry fluorescent protein production at 37 °C in response to an RNA thermometer. CONCLUSIONS: The LED-triggered photothermal protein production system here designed offers a new, cheaper, scalable switchable method, non-destructive for living organisms, and contribute toward the evolution of bioprocess production systems.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica/efeitos da radiação , Luz , Nanopartículas Metálicas/química , Escherichia coli/efeitos da radiação , Ouro/química , Temperatura Alta , Proteínas Luminescentes , Nanoestruturas , Nanotecnologia , Tamanho da Partícula , Temperatura
16.
ACS Synth Biol ; 10(5): 1143-1154, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33835777

RESUMO

Dynamic control of microbial metabolism is an effective strategy to improve chemical production in fermentations. While dynamic control is most often implemented using chemical inducers, optogenetics offers an attractive alternative due to the high tunability and reversibility afforded by light. However, a major concern of applying optogenetics in metabolic engineering is the risk of insufficient light penetration at high cell densities, especially in large bioreactors. Here, we present a new series of optogenetic circuits we call OptoAMP, which amplify the transcriptional response to blue light by as much as 23-fold compared to the basal circuit (OptoEXP). These circuits show as much as a 41-fold induction between dark and light conditions, efficient activation at light duty cycles as low as ∼1%, and strong homogeneous light-induction in bioreactors of at least 5 L, with limited illumination at cell densities above 40 OD600. We demonstrate the ability of OptoAMP circuits to control engineered metabolic pathways in novel three-phase fermentations using different light schedules to control enzyme expression and improve production of lactic acid, isobutanol, and naringenin. These circuits expand the applicability of optogenetics to metabolic engineering.


Assuntos
Butanóis/metabolismo , Flavanonas/biossíntese , Ácido Láctico/biossíntese , Luz , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/efeitos da radiação , Optogenética/métodos , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos da radiação , Reatores Biológicos , Proteínas de Ligação a DNA/genética , Ativação Enzimática/efeitos da radiação , Fermentação/efeitos da radiação , Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Redes e Vias Metabólicas/genética , Microrganismos Geneticamente Modificados , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética , Transcrição Gênica/efeitos da radiação
17.
Sci Rep ; 11(1): 5161, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664315

RESUMO

Sonoporation via microbubble-mediated ultrasound exposure has shown potential in drug and gene delivery. However, there is a general lack of mechanistic knowledge on sonoporation-induced cellular impact after membrane resealing, and this issue has made it challenging to apply sonoporation efficiently in practice. Here, we present new evidence on how sonoporation, without endangering immediate cell viability, may disrupt downstream cellular hemostasis in ways that are distinguished from the bioeffects observed in other sonicated and unsonoporated cells. Sonoporation was realized on HL-60 leukemia cells by delivering pulsed ultrasound (1 MHz frequency, 0.50 MPa peak negative pressure; 10% duty cycle; 30 s exposure period; 29.1 J/cm2 acoustic energy density) in the presence of lipid-shelled microbubbles (1:1 cell-to-bubble ratio). Results showed that 54.6% of sonoporated cells, despite remaining initially viable, underwent apoptosis or necrosis at 24 h after sonoporation. Anti-proliferation behavior was also observed in sonoporated cells as their subpopulation size was reduced by 43.8% over 24 h. Preceding these cytotoxic events, the percentages of sonoporated cells in different cell cycle phases were found to be altered by 12 h after exposure. As well, for sonoporated cells, their expressions of cytoprotective genes in the heat shock protein-70 (HSP-70) family were upregulated by at least 4.1 fold at 3 h after exposure. Taken altogether, these findings indicate that sonoporated cells attempted to restore homeostasis after membrane resealing, but many of them ultimately failed to recover. Such mechanistic knowledge should be taken into account to devise more efficient sonoporation-mediated therapeutic protocols.


Assuntos
Sistemas de Liberação de Medicamentos , Técnicas de Transferência de Genes , Proteínas de Choque Térmico HSP72/genética , Ondas Ultrassônicas , Sobrevivência Celular/efeitos da radiação , Expressão Gênica/efeitos da radiação , Células HL-60 , Proteínas de Choque Térmico HSP72/química , Proteínas de Choque Térmico HSP72/farmacologia , Humanos , Lipídeos/química , Lipídeos/farmacologia , Microbolhas/uso terapêutico
18.
BMC Biotechnol ; 21(1): 13, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541329

RESUMO

BACKGROUND: Chinese hamster ovary (CHO) cells are widely used for industrial production of biopharmaceuticals. Many genetic, chemical, and environmental approaches have been developed to modulate cellular pathways to improve titers. However, these methods are often irreversible or have off-target effects. Development of techniques which are precise, tunable, and reversible will facilitate temporal regulation of target pathways to maximize titers. In this study, we investigate the use of optogenetics in CHO cells. The light-activated CRISPR-dCas9 effector (LACE) system was first transiently transfected to express eGFP in a light-inducible manner. Then, a stable system was tested using lentiviral transduction. RESULTS: Transient transfections resulted in increasing eGFP expression as a function of LED intensity, and activation for 48 h yielded up to 4-fold increased eGFP expression compared to cells kept in the dark. Fluorescence decreased once the LACE system was deactivated, and a protein half-life of 14.9 h was calculated, which is in agreement with values reported in the literature. In cells stably expressing the LACE system, eGFP expression was confirmed, but there was no significant increase in expression following light activation. CONCLUSIONS: Taken together, these results suggest that optogenetics can regulate CHO cell cultures, but development of stable cell lines requires optimized expression levels of the LACE components to maintain high dynamic range.


Assuntos
Expressão Gênica/efeitos da radiação , Luz , Ovário , Animais , Células CHO , Sistemas CRISPR-Cas , Cricetinae , Cricetulus , Feminino , Técnicas Genéticas , Transfecção
19.
ACS Synth Biol ; 10(2): 345-356, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33465305

RESUMO

Microorganisms play a vital role in shaping the soil environment and enhancing plant growth by interacting with plant root systems. Because of the vast diversity of cell types involved, combined with dynamic and spatial heterogeneity, identifying the causal contribution of a defined factor, such as a microbial exopolysaccharide (EPS), remains elusive. Synthetic approaches that enable orthogonal control of microbial pathways are a promising means to dissect such complexity. Here we report the implementation of a synthetic, light-activated, transcriptional control platform using the blue-light responsive DNA binding protein EL222 in the nitrogen fixing soil bacterium Sinorhizobium meliloti. By fine-tuning the system, we successfully achieved optical control of an EPS production pathway without significant basal expression under noninducing (dark) conditions. Optical control of EPS recapitulated important behaviors such as a mucoid plate phenotype and formation of structured biofilms, enabling spatial control of biofilm structures in S. meliloti. The successful implementation of optically controlled gene expression in S. meliloti enables systematic investigation of how genotype and microenvironmental factors together shape phenotype in situ.


Assuntos
Biofilmes/crescimento & desenvolvimento , Optogenética/métodos , Polissacarídeos Bacterianos/biossíntese , Transdução de Sinais/efeitos da radiação , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Expressão Gênica/efeitos da radiação , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Luz , Raízes de Plantas/microbiologia , Ribossomos/metabolismo , Microbiologia do Solo , Sphingomonadaceae/metabolismo , Simbiose/genética , Fatores de Transcrição/metabolismo
20.
ACS Synth Biol ; 10(2): 219-227, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33492138

RESUMO

Dynamic control of engineered microbes using light via optogenetics has been demonstrated as an effective strategy for improving the yield of biofuels, chemicals, and other products. An advantage of using light to manipulate microbial metabolism is the relative simplicity of interfacing biological and computer systems, thereby enabling in silico control of the microbe. Using this strategy for control and optimization of product yield requires an understanding of how the microbe responds in real-time to the light inputs. Toward this end, we present mechanistic models of a set of yeast optogenetic circuits. We show how these models can predict short- and long-time response to varying light inputs and how they are amenable to use with model predictive control (the industry standard among advanced control algorithms). These models reveal dynamics characterized by time-scale separation of different circuit components that affect the steady and transient levels of the protein under control of the circuit. Ultimately, this work will help enable real-time control and optimization tools for improving yield and consistency in the production of biofuels and chemicals using microbial fermentations.


Assuntos
Engenharia Metabólica/métodos , Modelos Teóricos , Optogenética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Algoritmos , Biocombustíveis , Fermentação/efeitos da radiação , Expressão Gênica/efeitos da radiação , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Cinética , Luz , Redes e Vias Metabólicas/efeitos da radiação , Saccharomyces cerevisiae/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...